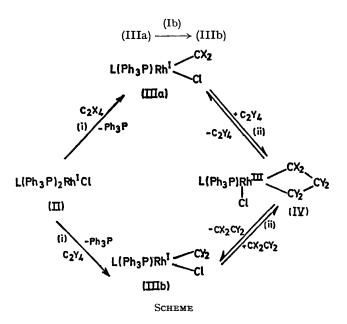

927

Rhodium(1)-catalysed Dismutation of Electron-rich Olefins: Rhodium(1) Carbene Complexes as Intermediates

By D. J. CARDIN, M. J. DOYLE, and M. F. LAPPERT* (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Dismutation of two different electron-rich olefins C_2X_4 and C_2Y_4 proceeds only in the presence of an additive, compounds such as $L(Ph_3P)_2RhCl$ ($L = Ph_3P$ or CO) being particularly effective; carbene complexes $L(Ph_3P)Rh(CX_2)Cl$ and $L(Ph_3P)Rh(CY_2)Cl$ are isolable intermediates and the active catalysts.

DISMUTATION of olefins, both hetero- and homo-geneously catalysed by transition-metal complexes, is a topic of current interest.¹ A mechanism involving a cyclobutane intermediate has been suggested,² but appears untenable.³ A concerted mechanism has been suggested,³ and is supported by kinetic data,⁴ in which the σ - and π -bonds of the two olefins are broken to give a tetramethylene-metal complex with each methylene group sp^3 -hydridized.³ We now provide definitive evidence for a metal carbene-complex intermediate in the catalysed dismutation of *electronrich* olefins by rhodium(I) complexes; and the first characterisation of rhodium(I) carbene complexes is described. (For a review on carbene complexes see ref. 5, for data on the new compounds see footnote to the Table.) Contrary to the hypothesis of electron-rich olefin dissociation into nucleophilic carbenes,⁶ a cross-over reaction between (Ia) and (Ib) to give (Ic) was found not to take place on heating the two olefins in xylene under reflux for 2 h.⁷ We confirm this, but find that dismutation does take



place, with the formation of crossed product (Ic), under the same conditions except for the presence of a catalytic amount of a rhodium(I) complex (see Table). Catalysis by organic compounds is under investigation.

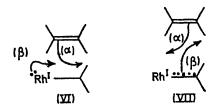
For catalysis by $L(Ph_3P)_2RhCl$ ($L = Ph_3P$ or CO) (II) of the dismutation: $C_2X_4 + C_2Y_4 \rightleftharpoons 2CX_2$: CY_2 , we suggest the following simplified mechanism (see Scheme). Evidence rests on: (a) the demonstration of step (i) {see ref. 8 for

trans-Et₃P(Cl₂)PtC[N(Ph)CH₂]₂, (V), obtained from (Ia) and $(Et_3PPtCl_2)_2$ for C_2X_4 or $C_2Y_4 = (Ia)$ or (Ib); (b) the characterisation of the appropriate complexes (III) prepared as in step (i); (c) the catalytic activity of (III) (see Table); and (d) the conversion:

for $L = Ph_3P$. Additionally, (e) the oxidative addition step (ii) seems plausible because other oxidative addition reactions of (III) can be demonstrated,⁹ and (f) (V), which is known to be unreactive with regard to oxidative addition,⁸ is not a dismutation catalyst (see Table). Dicarbene complexes L(Cl)Rh(CX₂)(CY₂) are also possible intermediates (some, L = CO, have been isolated¹⁰) but we cannot yet distinguish between 2-C- and 3-C-situations.

The transition state involved in the formation of (IV) from (JII) may be as shown in (VI) or (VII) with the former more

Dismutation	of	(Ia)	and	(Ib)	to	give	(Ic) ^a	
-------------	----	------	-----	------	----	------	-------------------	--


Compound		Concen- tration (mole %)	Yield of mixed olefin (%) ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 	1·8 1 (0·5) 1 1	50 40 (17) 40 40
$(Ph_{3}P)_{2}(OC)Rh(Cl)C[N(Ph)CH_{2}]_{2}$ ° trans-Et ₃ P(Cl) ₂ PtC[N(Ph)CH_{2}]_{2}, (V)	•••	1 1	40 0

^a Olefins (ca. 2×10^{-2} M) in boiling xylene for 2 h, under an atmosphere of nitrogen.

^b Statistically, the maximum yield of mixed olefin is 50%; the quoted yields by ¹H n.m.r. integration (of ring methylene protons in a MeCN solution of the dinitrate salts) are reproducible to at least $\pm 5\%$.

^c New carbene complexes L(Ph₃P)RhClC {N(R)CH₂}₂ (i)-(iii) are characterised by: i.r., $v_{C=0}$, $v_{C...N}$, v_{Rh-Cl} (Nujol mull); n.m.r., $\delta(CH_2)$ (CDCl₃); m.p.; additional data: (i) L = Ph₂P, R = Ph; -, 1498(s), 285(w, broad) cm⁻¹, τ 7.0; 194–195° d; orange crystals; ³¹P n.m.r. shows trans-configuration. (ii) L = CO, R = Disconfiguration. (iii) L = CO, R = Disconfiguration. Ph; 1973(vs), 1495(s), 299(w) cm⁻¹; τ 5-7; 193—195° d, yellow crystals. (iii) L = PPh₃, R = *p*-Me·C₆H₄; -, 1513(s), 298(w, broad) cm⁻¹; τ 7·0; 191—192° d, yellow crystals.

likely. Thus, for (VI), electron-rich olefins and RhI are good nucleophiles and C_{carb} is an electrophilic centre; the covalency changes (α) and (β) in (VI) or (VII) need not be synchronous; in that event, (α) probably precedes (β).

We thank the S.R.C. for their support and Dr. C. G. Smith and Messrs. Engelhard for loans of precious metals.

(Received, 12th June 1972; Com. 1003.)

¹ Cf. G. C. Bailey, Catalysis Rev., 1969, 3, 37; M. L. Khidekel', A. D. Shebaldova, and I. V. Kalechits, Russ. Chem. Rev., 1971, 40, 669. ² F. D. Mango, Adv. Catalysis, 1969, 20, 291; F. D. Mango and J. H. Schachtschneider, 'Transition Metals in Homogeneous Catalysis,'

- ed. G. N. Schrauzer, Marcel Dekker, New York, 1971, p. 223.

 - ^a G. S. Lewandos and R. Pettit, J. Amer. Chem. Soc., 1971, 93, 7087.
 ^a P. P. O'Neill and J. J. Rooney, J.C.S. Chem. Comm., 1972, 104.
 ^a D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, in the press.
- Cf. H. W. Wanzlick, Angew. Chem. Internat. Edn., 1962, 1, 75.
 D. M. Lemal, R. H. Lovald, and K. I. Kawano, J. Amer. Chem. Soc., 1964, 86, 2518; D. M. Lemal, 'Chemistry of the Amino Group,' ^a D. J. Cardin, M. J. Doyle, and M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, *Chem. Comm.*, 1971, 400.
 ^b D. J. Cardin, M. J. Doyle, and M. F. Lappert, to be published.

 - ¹⁰ B. Çetinkaya and M. F. Lappert, unpublished observations.